

SRD1000 Superconductive Reference Devices for Accurate Thermometry on the PLTS-2000

Kamerlingh Onnes Laboratorium

R. Jochemsen, X.Z. Liu

P.O. Box 9504 2300 RA Leiden, The Netherlands

J. Engert Abbestrasse 2-12 10587 Berlin, Germany

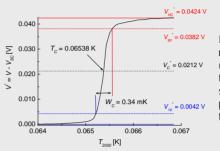
Introduction

- SRD1000 devices support 10 reference temperatures between 10 mK and 1.2 K $^{\left[1\right] }$
- Superconducting to normal transitions of various metallic samples provide stable reference points for thermometry
- Evaluation of prototypes by European metrological institutes proved that the SRD1000 concept is convenient and reliable for transferring the PLTS-2000 ^[2,3,4], the international ULT scale below 1 K

New SRD1000 pilot production series

- A compact array of planar micro-coils detects the superconductive transitions of the reference samples
- Preparation procedures and attachment techniques for the samples are improved compared to the prototypes series
- A Cryoperm / niobium shield reduces ambient magnetic fields by a factor of 400. The shield has improved thermal properties
- Filters block EM-interference from penetrating the sensor

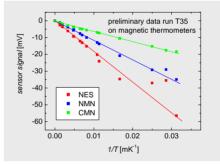
- The detection electronics supplied with the sensor produces an accurate DC voltage with clearly defined steps at the reference points independent of the experimental set-up
- Measurements show an improved quality of the reference points at 15 mK, 21 mK, 520 mK and 850 mK compared to the prototype series ^[5]


Typical values of the reference points

#	material	T_C [mK]	<i>W_c</i> [mK]	<i>U_c</i> [mK]	
1	W	15	< 0.2	< 0.04	$T_c = \text{temperature}$
2	Be	21	< 0.3	< 0.06	condu
3	$Ir_{80}Rh_{20}$	30	< 0.5	< 0.1	W_{C} = trans
4	$Ir_{92}Rh_{08}$	65	< 0.5	< 0.1	interv
5	lr	98	< 0.5	< 0.1	the
6	AuAl ₂	145	< 0.5	< 0.1	80%)
7	Auln ₂	208	< 1	< 0.2	U_c = estim
8	Cd	520	< 3	< 0.6	in det
9	Zn	850	< 3	< 0.6	the cl
10	Al	1180	< 4	< 0.8	transi

- T_c = temperature of the superconductive transition
- W_c = transition width (temperature interval in which the signal of the transition changes by 80%)
- U_c = estimate of the uncertainty in determining T_c related to the characteristics of the transition

Calibration of the reference points


- PTB (the national metrology institute of Germany) calibrates the SRD1000 devices with the highest accuracy and reliability
- The calibration allows accurate transfer of the PLTS-2000 to the ultra-low temperature community
- Calibrated devices are commercially available through HDL

Example of a calibrated reference point at 65mK (superconductive transition of an Ir_{92} Rh₀₈ sample); the calibration parameters of the transition are indicated

Magnetic thermometer option

- A magnetic thermometer integrated with the SRD1000 sensor allows interpolation between the reference points
- Possible candidates (depending on the temperature range) are paramagnetic salts, for example powdered NES, NMN or CMN

Preliminary results of measurements on the magnetic signal of some paramagnetic salts versus 1/T (the sensor signal is proportional to the susceptibility of the material)

Further developments

- To integrate the magnetic thermometer option with the technology for detecting the reference points
- To increase the number of supporting points for the PLTS-2000 with a Mo reference point at 950 mK and a Ti point at 300 mK

References

- 1. W.A. Bosch et al., in *Temperature: Its Measurement and Control in Science and Industry* **7**, 155-160 (2003), edited by D.C. Ripple, AIP, New York.
- 2. R. Rusby et al., J. Low Temp. Phys. 126, 633 (2002).
- 3. A. Peruzzi et al., Proc. of TEMPMEKO2004, (to appear).
- 4. S. Schöttle et al., J. Low Temp. Phys. 138, 941 (2005).
- 5. W.A. Bosch et al., Proc. LT24 (to appear).

Financial support

European Commission, Measurement and Testing activity of the Competitive and Sustainable Growth programme, contract number G6RD-CT-1999-00119

Further information

E-mail: *HDLinfo@xs4all.nl* Web page: *http://www.xs4all.nl/~hdleiden/srd1000*